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SUMMARY 

The Beattie-Bridgeman equation of state was used to develop the 
equations of several of the thermodynamic properties and flow process 
correction factors for gases. The increase in the specific heats due 
to the vibration of diatomic molecules was included by assuming the 
molecules to be perfect harmonic oscillators. Thermodynamic and 
flow process equations are theoretically developed. The particular 
flow processes investigated were isentropic expansions and flow through 
normal shock waves. 

The calculation procedures for isentropic expansions and flow 
through normal shock waves are included in the appendix. Also in­
cluded are the results of several calculations in which air was used 
as the media of flow. Graphs of the thermodynamic properties and 
Beattie-Bridgeman correction factors for air are included to provide 
a general picture of the effect of temperature and pressure. 

NOMENCLATURE 

a, b, c, Ao' B~ 

a 

Beattie-Bridgeman constants defined in appendix 

Speed of sound, ftf sec 

c 

E 

F 

G 

h 

I 

J 

k 

K 

L 

M 

p 

Specific heat, Btuflb 

Defined by Eq. (3) 

Defined by Eq. (44) 

Defined by Eq. (38) 

Defined by Eq. (6) 

Defined by Eq. {24} 

Enthalpy, Btuflb 

Defined by Eq. (51) 

Defined by Eq. (47) 

2oY/(oy-l) 

Defined by Eq. (45) 

Defined by Eq. (61) 

Mach number 

Pressure, psia 
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q 

R 

S 

T 

u 

v 

v 
w 

x 
y 

() 

p 

PRESUBSCRIPTS 

o 

SUBSCRIPTS 

c 

p 

r 

T 

v 

tr 

vib 

00 

6 

Heat energy, Bt:u/lb 

Gas Constant, (ft3 lbJ I (in. 2 oR lb-mol) 

Entropy, Btu/lb oR 

Temperature, oR 

Internal energy, Btu/lb 

Volume, ft 3 

Velocity, ftl sec 

Mass flow, lb/ft2 sec 

Defined by Eq. (58) 

Specific heat ratio 

Characteristic atomic vibration temperature 
in lowest energy state, oR 

Densi~, lb/ft~ 
"-~-'--~-'~' 

Perfect gas property 

Compression component 

Constant pressure 

Rotational component 

Total (isentropic stagnation condition) 

Constant temperature 

Constant volume 

Translational component 

Vibrational component 

Infinite volume property (zero pressure) 
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INTRODUCTION 

For wide ranges of pressures and temperatures, the perfect gas 
equation of state does not define accurately the relation between specific 
volu:me, pressure, and temperature of a gas. Furthermore, the ratio 
of specific heats changes considerably from the perfect gas values when 
the temperature and pressure of the gas differ widely from standard 
conditions. However, as long as the temperature remains between 3000 

and 7000 R and the pressure remains between 0 and 30 psia during a 
thermodynamic process, the perfect gas relations provide relatively 
accurate values of the thermodynamic properties of gases. 

The Gas Dynamics Facility. Arnold Engineering Development Center 
(GDF - AEDC) has wind tunnel circuits capable of producing pressure 
variations from near 0 to 2500 psia and temperature variations from 
about 700 to about 20000 R. Since test results based on the perfect gas 
relations and constant specific heats are apt to be in error, a method of 
correction is needed. 

The Beattie~Bridgeman equation of state and the values of the con­
stants for several gases were published in 1928 (see Ref. 1). The 
purpose of the equation was to provide a means of calculating more 
accurate values of the thermodynamic properties of actual gases. 
However, the thermodynamic relations developed from this equation 
are extremely complicated and cumbersome when compared with the 
relations developed from the perfect-gas equation of state. The addi­
tional work involved is not ordinarily justified by the increased accuracy 
of the calculations; therefore, the equation has never been used exten­
sively. 

The need for greater accuracy in research work has caused a re­
newed effort to develop methods of calculating gas properties with an 
accuracy in keeping with the precision of experimental instrumentation. 
This work is submitted as a step toward this end, and with an imme­
diate objective of permitting a more accurate calibration of the GDF 
wind tunnels. 

This report is an elaboration of the work reported in Ref. 2 and 
makes several changes such as: (1) the use of engineering units, (2) 
the addition of two more terms to the infinite series expressing density 
ratio, (3) the use of more recently determined values of the character­
istic temperature of vibration for molecular nitrogen and oxygen, (4) 
the use of standard gas mixture proportions for air as reported in Ref. 
3, and (5) the inclusion of two specific methods of solving flows through 
normal shock waves. 

7 



DEVELOPMENT Of THE THERMODYNAMIC EQUATIONS 

DENSITY 

The Beattie-Bridgeman equation of state for an imperfect gas is 
(see Ref. 1) 

p=~t (1-v~3) [V+Bo(l-~)]-~~(l-:) (1) 

Expanding Eq. (1) and collecting terms we can obtain 

Letting 

and using the relation 

p =1-
v 

we can write Eq. (2) in the form 

Let p be represented by an infinite series of the form 

RT 
~ 

Obtaining successive powers of Eq. (4), substituting in Eq. (5) 

(2 ) 

(3 ) 

(5) 

and solving for the values of gl through & gives the following relations: 

8 



Substituting in Eq. (5) the perfect gas relation 

p 
oP = RT 

we obtain the density ratio 

SPECIFIC HEAT 

AE DC· T R·57·10 

(6 ) 

(7 ) 

The internal energy of a gas consists of the kinetic energy of the 
molecules and the atoms within the molecules, and the potential energy 
of the molecules. When energy is added to a gas, each of these internal 
energy factors takes up its portion according to the characteristics of 
the gas involved. 

The kinetic energy of the molecules is dependent upon the number 
of significant degrees of freedom of translation and rotation. and the 
temperature of the gas. Most gas molecules take up an amount of 
energy very nearly equal to 1/2 RT per mol of gas for each significant 
degree of freedom. Translation takes place along the three axes of 
space for all temperatures, even approaching absolute zero. Thus, the 
translation of the molecules provides three degrees of freedom. Rota­
tion about the three axes of space begins at some finite temperature 
above absolute zero, and the rotational degrees of freedom become fully 
activated at a slightly higher temperature. The number of axes about 

9 
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which rotation is significant and the temperature above which full activa­
tion is attained are dependent upon the particular gas involved. Once a 
particular gas is selected and the number of significant degrees of free­
dom determined, the molecular kinetic energy becomes a function of the 
temperature of the gas alone. 

The atomic kinetic energy is dependent upon the characteristics of 
the individual atoms s the number of atoms involved, and the tempera­
ture of the gas. This energy is held by the moving atoms as they oscil .. 
late with respect to one another within the molecule and is called the 
vibration energy. * As with the molecular kinetic energy, once the 
particular gas is selected and the vibration characteristics determined, 
the atomic kinetic energy becomes a function of the temperature of the 
gas alone. 

The molecular potential energy is the energy required to force 
the molecules into close association with one another. In any real gas 
this energy is a function of any two of the variables of state l P, v I and 
T. The perfect gas equation of state and its accompanying thermody­
namic relations consider only the molecular kinetic energy; they neglect 
both the atomic kinetic energy and the molecular potential energy. The 
Beattie-Bridgeman equation of state and its accompanying thermody­
namic relations are based upon a consideration of the molecular kinetic 
and potential energy. If the atoms involved approach perfect harmonic 
oscillators, the atomic kinetic energy can be easily accounted for in 
either the perfect gas or Beattie-Bridgeman thermodynamic relations. 

The rotation of monatomic molecules does not represent a signifi­
cant amount of energy since its moment of inertia is negligible about 
the three axes of space. Since there is only one atom present in the 
molecule, there can be no atomic vibration. Thus, the internal energy 
of a monatomic gas consists of only the molecular kinetic energy of 
translation and the molecular potential energy. From the preceding 
discussion we can see that the internal energy of a monatomic gas should 
be about 3/2 RT per mol when tl:le molecular potential energy is negligible. 

The diatomic molecule presents a problem which is considerably 
different from the monatomic molecule. The three degrees of freedom 

* The electronic, ionization, and dissociation energies will not be 
discussed since they become significant only at temperatures above 
the range considered in this work. 

10 
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of translation remain the same. However, considering the molecule to 
have a dumb-bell like form, where the atoms are spaced a short distance 
apart and held together by a rigid bar, the moments of inertia about the 
three axes of space are no longer negligible. Visualizing one axis 
coinciding with the bar connecting the two atoms, we see that the moment 
of inertia about this axis is negligible when compared with the moments 
of inertia about the other two axes of space. From this analysis we see 
that for diatomic molecules two degrees of freedom of rotation must be 
added to the three degrees of freedom of translation. Thus, the internal 
energy of a diatomic gas should be about 5/2 RT when the molecular 
potential energy and the atomic kinetic energy are negligible. 

The potential energ-y of a gas approaches zero as the pressure 
approaches zero (or the volume becomes infinite) regardless of the 
gas temperature. Thus, one can conceive of a hypothetical expansion 
of a gas by a constant-temperature process until the volume becomes 
infinite. Then the only internal energy remaining in the gas is the 
kinetic energy of the molecules and the kinetic energy of the atoms. 
Although not rigorously additive, a sufficient degree of approximation 
cari be obtained by separating the kinetic energy into the sum of its 
three components as follows: 

U oo = Utr + U r + U vib (8) 

(Ur and Uvib are not independent; see Ref. 4). 

Since the internal energy of a perfect gas considers the translational 
and rotational energy, we can write Eq. (8) as 

U"" = aU + Uvib (9) 

The specific heat of a gas is given by the thermodynamic relation 

(10) 

where 

7i:q = du + pdv (11 ) 

To determine the specific heat due to vibration, the pressure is assumed 
zero and we can write from Eqs. (10) and (11) 

dUvib 
Cvib= dT 

(12 ) 

Integration gives 

IT iUVib 

Cvib dT = duvib 
o _ 0 

(13 ) 

11 
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or 

(14) 

Both Cp and Cv will be increased by C vib when atomic vibrations are 
considered. 

The internal energy of the gas at infinite volume is given by Eq. (8) 
as u oo • To obtain the total internal energy one can assume a hypothetical 
constant temperature compression of the gas to normal pressure; then 
the total internal energy of the gas is the sum of the infinite volume in­
ternal energy and the energy of compression. Thus, we can write 

U = Uoo + Ue = aU + U vib + Ue 

where U e is a function of any two of the state variables p, v, and To 
Considering it to be a function of v and T we can write 

Ue=u(v,T). 

from which 

(15) 

(16) 

dUe = (~~)T dv + (~;)v dT (17) 

Since a constant temperature process is to be used for the compression, 
Eq. (17) can be written 

due = ( a U \ dv (18 ) 
\ av) T 

Integrating Eq. (18) we have 

(19 ) 

When the thermodynamic identjty (~) = T (.E.L) -p is used, av T aT v 

Eq. 

(20) 

When we expand Eq. (2), differentiate with respect to T holding v constant. 
and substitute into Eq. (20). we get 

12 
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Integration and the substitution of p =; gives 

= R [_ (Aa k) _ 2 (BBac _ Aaa) 3 (~)] 
Uc P R + T 2 P 2 T 2 2 R + P /T 2 

Using Eqs. (14), (21)>> and the perfect gas relation aU = aCvT 

in Eq. (15) produces the equation for the total internal energy of a 
Beattie-Bridgeman gas considering the contribution of the atomic 
vibrations. This equation is 

If we use the perfect gas relati()n 

and let 

Eq. (22) becomes 

U· "CoT{ 1+(oy-1) 

\ R=oCv(oy-1) 
\ -- ~ 

C = -I-iT Cvib dT 
RT 

o 

[C- (& k..) _ 2(~ _~) J(~)]} P RT + T3 P 2 T3 2RT + P T3 

(21 ) 

(22) 

(23) 

(24) 

(25) 

Using Eqs. (10) and (II) to obtain the specific heat for a constant 
volume process gives 

(26) 

Substituting Eq. (21) into Eq. (15) and differentiating with respect to T 

with v constant produces 

dUvib 6Rc (1 Bo Bob 2) 
+ ~+~P + -2- P - -B-P (27) 

Using Eq. (12) and the perfect gas relation 

C dou 
o v=~ 

we have the specific heat at constant volume for a Beattie-Bridgeman 
gas with the contribution of the atomic vibrations considered 

C C C 6Rc (1 Bo Bob 2) 
v = 0 v + vib + ~ P + -2- P - -B- P ( 28) 

13 
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The specific heat at constant pressure can be determined from the 
thermodynamic identity 

Cp - Cv ~ - T (aplar)~ 
(JpIJv)r 

Obtaining (Jp/JT)~ and (Jp/Jv)r from Eq. (2) we find 

(29 ) 

(30) 

With the equations for Cv and Cp, the ratio of specific heats is determined 
in the usua.l way as 

ENTHALPY 

Cp 
Y=c 

v 

The enthalpy of a gas is defined by the equation 

h = u+ L 
p 

If we rewrite Eq. (2) in the form 

and add Eq. (25), we get the enthalpy relation for a Beattie-Bridgeman 
gas with the contribution of atomic vibrations considered: 

h = OCvT{OY+(OY-1) [c+ p (Bo-~- k) + p2 (3Aoa ~ 5Boc -B b)+p3(2BObC)J}· 
RT T3 2RT 2 T3 0 r 

Using the two perfect gas relations 

we obtain the ratio of the Beattie-Bridgeman enthalpy to the perfect gas 
enthalpy: 

(31 ) 

o~ = 1+ (0:;1) [c+ p (Bo- ~A; - ~~) +p2 (~~c; _~BT~C ~Bob) +p3(2B;~C)](32) 

14 



AE DC. TR·Si·10 

ENTROPY 

Entropy is a state variable the same as P, V,I 18 and u. Therefore, 
we may obtain the change in entropy between any two gas conditions by 
proceeding from one condition to the other by any desired method or 
path. 

The thermodynamic relation for entropy is 

. Cv (a p ) 
dS = T d1 + aT dv 

v 

Integrating between point I and 0, we get 

f"os ~ f" C; dT + f" (~~), dv 

Holding T constant at 11 and evaluating the change in entropy involved 
when V changes from VI to vo and designating this change as (So -SI)2 

we have 

(So -SI)2 = rvo (~i) v dv (33) 
JVI (T= TI ) 

Next, holding v constant at V o, evaluating the change in entropy involved 
when T changes from TI to 10 and designating this change as (SO-SI)I 
we have 

Finally, the total change in entropy when proceeding from point 1 to 
point 0 is given by adding Eqs. (33) and (34): 

So -5, ~ (So -8,1, +(So -S,), ~ i,T" ~' dT + £'0 (;;), d, 

(v=vo) (T-T I ) 

Replacing C v in Eq. (34) by Eq. (28), we get 

(34) 

(s _ S) =J,Toocv dT LTo Cvib dT +LTO 6Rc P (l+p Bo _p2 Bob) d1 (35) 
o 1 I T + T T4 2 3 

T I TI Tl ( ) 
,0=,00 

Using Eq. (23) and evaluating the first integral of Eq. (35) gives 

1 

_R_ iT
o 

AI... = R In (To) oY - 1 
oy-l T TI 

Tl 

15 



AE DC. TR·57·10 

Let the second integral of Eq. (35) be defined as 

( 36) 

Evaluating the third integral of Eq. (35) we have 

i To [ R 6c ( Bo 2 BOb) ( 2BOb) T """"f4P 1 + P-2- - P -3- dT = R cpo 2+PoBo - P02 -3-

l(p=PO) 

Replacing these three integrals in Eq. (35) we have 

Obtaining (;~) from Eq. (2) and substituting into Eq. (33) gives 
v 

Integrating, replacing ~ by P and adding to Eq. (37) gives 

- Po (Bo + T
2:S ) - P02 

(
Boc -~) _ 3 2B obc 1 
T 3 2 Pi 3 T 3 

1 1 

Letting 

(38) 

we have the change in entropy between condition 0 and condition 1 for a 
Beattie-Bridgeman gas considering the contribution of atomic vibrations: 

So - Sl = R In [(IE-) oy ~ 1 ~!!..L!..LJ (39) 
Tl El Po F 0 

16 
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'DIATOMIC VIBRATION/CORRECTIONS 

Diatomic molecules have only one normal mode of vibration. If the 
vibration characteristics of the molecule approach the characteristics 
of a perfect harmonic oscillator, the vibration component of specific heat 
is given as (see Ref. 5) 

Cvib = R [sinhO(O~;T) r '" R 
(0/T)2 exp O/T 
(exp OfT - 1)2 

When C vib in Eq. (14) is replaced by Eq. (40), it becomes 

To inte gra te let 

Then 

Uvib = R ()/2T dT f. T[ J2 
o sinh(Oh T) 

y = ~ 
2T 

dy = - -.!i. dT 
2 T2 

Note that as T->O, y .... oo and as T->1, y->y. Thus, 

uvib = -R o{y ~_ 
2 smh2 y 

00 

Dividing through by RT we have 

Uvib ~ G =' _1_J.TCVib dT = -y l Y
, d{ 

RT RT smh y 
o _ "" 

which, when integrated~ yields 

G = __ .....;2y'---__ 
exp (2y) - 1 

(40) 

(41) 

(42) 

Equation (42) gives the contribution of the vibration of the atoms to 
the internal energy of a diatomic gas provided the vibration character­
istics of the molecule approach the characteristics of a perfect harmonic 
oscillator. 

Evaluating Eq. (36) in a similar manner, we obtain 

LTo lTO i TI 

C vib dT = C vib dT - C vib dT = R in ~ 
T. ToT 0 T El 

1 

(43 ) 

We find the solution of the first right hand integral to be 

I T Cvib dT = _R[Y ,yd{ = R [Y coth y -in I sinh y \]Y 
T smh y 

0 0000 

17 
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Since we are dealing with only real values of y, sinh y is always positive. 
Thus, I sinhy I = sinh y. Substituting the limits we have 

R In;; ~f.T C ";' dT ~ R [Y coth y -In (2 'iMY)] 

Solving Eq. (44) for E gives 

E = 
exp [2y/(exp 2y - 1)] 

1 - exp(- 2y) 

DEVELOPMENT OF THE FLOW PROCESS EQUATIONS 

ISENTROPIC FLOW 

( 44) 

Since an isentropic process involves no change in entropy, we may 
equate the right side of Eq. (39) to zero. 

Thus, 

o = ~n 

or 

Multiplying both sides by pipi and rearranging 

ElF plpRT 
E1IF, Pl/plRTI 

Using Eq. (4) and letting 

we obtain 

Let 

18 

F = E (1' 2 3) /\ F +elP + e2P + e3P 

J = h 
oh 

(45 ) 

(46 ) 

(47 ) 



as defined by Eq. (32); then we can obtain 

h = oCpTI 

Using the thermodynamic relation 

V2~2(ht-h) 

and replacing h by Eq. (48) we have 

Va = 2 0 CpT (T~lt -I) 

The thermodynamic relation for the speed of sound is 

a 2 = y (JE..) ap T 

AE DC. T R·S7-10 

( 48) 

(49) 

(50) 

Differentiating Eq. (4) and substituting in the above equation we get 

Letting 
(51 ) 

we obtain 

a 2 = IoyRT = l(oa2 
) ,; :> (52) 

Dividing Eq. (50) by Eq.~ g~'t~nd using ~~s. (~3)~~d'(31) gives 

Solving for'!..! produces 
T 

or solving for T we have 

2'(~-/) 
(oy-I)I 

T = T t It 
oy - I 1M2 + I 

2 

(53 ) 

(54) 

(55 ) 

Rewriting Eq. (46) in terms of stagnation quantities and substituting 
Eq. (54) gives 

Kt 
K 

(56 ) 

19 
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Solving Eq. (56) for M we obtain 

_. 

oY - 1 

M = 

It (PtK ) oY - ! 
pKt 

oY - 1 1 
2 

(57 ) 

Substituting Eq. (48) into Eq. (49), dividing by Eq. (52) and using 

the relations in Eqs. (23) and (31)and ,W = V2

2 
we find that 

a 

Letting 

2h t ! 

7= 
M2 + _2_ l.­

oY - 1 I 

va M2 
X =--

2h t - M2 + _2_..L 
oY - 1 I 

and solving for M2 we get the equation 

M2 = _2_ .L _x_ 
oy - 1 I 1 - x 

Replacing M2 in Eq. (55) by Eq. (59) we obtain the solution 

T;:' Ttft U-X) 
! 

(58) 

(59) 

(60) 

By substituting Eq. (48) into Eq. (49), multiplying both sides by 
P and using Eqs. (23) and (31) it is found that 

p v' 
P P oY - 1 (2ht;V2) P V = 

----
pRT! 20Y 

Letting 

L -p- (61 ) 
pRT! 

and 
k 

20Y 
oy. - 1 

we obtain the result, 

P L 
P V = k 

(62) 

20 
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FLOW THROUGH NORMAL SHOCK WAVES 

In order to determine the relation between the variables of state on 
the forward and aft side of a normal shock wave it is necessary to apply 
three equations to the flow through the shock wave: 

Conservation of Mass 

Conservation of Momentum 

Conservation of Energy 

htt = hta 

NOTE: The subscripts 1 and 2 applYIl respectively, to conditions 
forward and aft of the shock wave. 

Substituting Eq. (63) into Eq. (64) and using Eq. (62) gives 

La (~y ~: -~:) -Ll (~y -1) = k (1- ~: ) 
From Eqs. (63), (58)0 and (65) it follows that 

Multiplying through by Xl ~~ and collecting terms, we get 

(~:Y [X 1 (La-k)] + ~: [Xl (k-Ll) + LI] -La = 0 

From Eqs. (58), (65), and (63) we can establish that 

~: = (;:Y 
Also, from Eqs. (48) and (65) we find 

Tea Itt = Tea Ita 

Let Eq. (53) be written in the form 

M 2 
_2 = 
M 2 

I 

llTI (J t2 T h - laTa) 

laTa (Jtt Tea - 11 T 1) 

(63) 

(64) 

(65) 

(66 ) 

(67) 

(68) 

21 
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By using Eqs. (68), (60), and (67) it follows that 

Write Eq. (62) in the form 
P2 P2 L 2 (1 - V/12h

t2
) 

Pl P1L l (1 - V1
2 /2h tt ) 

in which we substitute Eq. (58) to get 

P2L2 (1 - X2) 
P1L l (1 - Xl) 

( 69) 

(70) 

SubstitutLng Eq. (63) into Eq. (64), dividing through by two times 
Eq. (48) and using Eq. (65), we obtain 

Using Eq. (58) and the relation 

P 

Using the perfect gas relation 

R '" 

and solving for Pl, we get 

22 

L P 
oP RT 

( OY-1) T ] 
20Y 1 

(71 ) 
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CONCLUDING REMARKS 

Numerous equations have been derived in the preceding pages. For 
the convenience of readers who are interested in the basic equations 
required for the calculation of specific gas properties, the following list 
is provided: 

Property Eq. Property Eq. 

Cp 30 K 45 
~ 

Cv 28 L 61 

plop 7 E 44 

I 51 F 38 

J 47 SO-Sl 39 
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APPENDIXES 

A. CONSTANTS FOR AIR 

B. CALCULATION PROCEDURES 

The calculation of isentropic expansions of air by the method pre­
sented is both simple and rapid. Usually the second iteration provides 
a sufficiently accurate result. The difference between the results 
obtained by using the perfect gas equations and the Beattie-Bridgeman 
equations is generally less than 5 percent for the range of pressures 
and temperatures investigated. 

The calculation of air flows through normal shock waves, by the 
method presented, is rather tedious and time consuming if a desk calcu-­
lator is used. However, most electronic digital computers can handle 
the problem easily if it is necessary to have a greater accuracy than 
provided by the perfect gas equations. The difference between the 
results obtained for air with the perfect gas equations and the Beattie .. 
Bridgeman equations is generally less than 5 percent for the range of 
pressures and temperatures investigated. 

It is interesting to note that the Beattie-Bridgeman calculations 
predict an increase in stagnation temperature across a strong normal 
shock wave. Figure 8 of Ref. 7 shows a recovery factor slightly 
greater than one at the stagnation point for the Mach 3.24 condition, 
verifying this prediction. The fact that the recovery factor decreased 
at Mach 4.18 and 4.92 can probably be attributed to the low accompany .. 
ing Pel" Note that the table of normal shock wave calculations shows a 
decrease in Tt2 with decreasing Ph for constant Ttl and Pt/Ph' 
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APPENDIX A 

CONST ANTS fOR AI R 

The Beattie-Bridgeman constants used in the numerical computations 
for air are: 

4906.5 =-~ft-:3 -,-:lb----" 
lb mol in~ 

ft3 
Bo c= 0.73860 lb mol 

a 

b 

c 

0.30931 ft3 
lb mol 

_ 0.17636 ft
3 

lb mol 

Other constants used in the computations are: 

oy = 1.4000 oCv = 0.17141l~~~ 

ft3 lb/in~ _ _ Btu 
R c= 10.729 OR lb mol - 0.068561 lb ° R 

From the composition of standard air given in Ref. 3, it is noted 
that N2 and O2 are the only polyatomic molecules of significant concen­
tration. Hence. we may consider a composition of O. 78088 N2 and 
0.2095 O2 to determine the vibration components of the various thermo­
dynamic quantities. Due to the form of Eq. (40) the specific heat of 
vibration for oxygen and nitrogen will be additive. Thus, we can write 

Cvib air = 0.78088 Cvib N + 0.2095 Cvib 0 
2 2 

(72) 

Theta may be calculated from the equation 

() = hUJe c 
k 

where h Plancks constant 6.6234 X 10 -27 erg sec 

k Boltzmanns constant 1.3803 x 10-16 erg/oK 

C c= Speed of light 2.9978 x 1010 em/sec 

UJe Normal mode of vibration + c, 1 
cm 
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Unfortunately, the value of U)e for a given molecule has several values 
which are dependent upon the state of the molecule. However, since the 
temperature range covered in this work is too low to shift an appreciable 
proportion of the molecules into the higher electronic levels, the normal 
or unexcited state is used. Reference 6 gives these values as 

U)e N 2 2359.6 c~ 

U)e 0 2 = 1580.4 c~ 

Thus, we calculate 

()N
2 

6109.7 oR 

()o 4092.1 oR 
2 

The specific heat of air due to vibration can now be calculated from 
Eqs. (40) and (72) using the above values of (). Thus, we obtain 

C . _ 706.85/T 245.22/T [ J2 [ J 2 

vlbair - sinh (3054.9/T) + sinh (2046.1/ T) 
( 73) 

In a similar manner G for air is determined from Eq. (42) to be 

Gair = - 4770.9/ T _ 857.29/ T '.1 (74) 
1 - exp ( 6109.7 /T) 1 - exp (4092.1/Tc) . 

Since lnE is desired for Eq. (39), we must write 

inEair = 0.78088 In EN + 0.2095 in Eo 
2 2 

From this we obtain 
E· = EN 0.78088 Eo 0.2095 

air 2 2 

By using Eqs. (42) and (44) the final result is found to be 

[ 
exp G N J 0.78088 

Eah = 2 
1- exp (- 6109.7 /T) [ 

exp Go ] 0.2095 

l-exp (.-409;.1/T) 

28 
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APPENDIX B 

CALCULATION PROCEDURES 

ISENTROPIC EXPANSION 

After an isentropic expansion from the stagnation conditions Ttl and 
Ptl to a pressure Pl. the Mach number. M1 • and temperature. Tl can be 
obtained as follows: 

(1) Determine the perfect gas values of the Mach number, oMl and 
temperature OT1' 

(2) Obtain IlJ 11 and Kl for the values of Pl and oT
1

• Obtain I hand 
Ktl for the values of Ptt and Ttt • 

(3) Solve Eq. (57) for Ml and Eq. (55) for Tl • 

(Note: The last value obtained for a quantity should be substituted in 
subsequent equations which require that quantity. For example. the 
value of Ml obtained with Eq. (57) should be used in Eq. (55) to calcu­
late Tl ). 

(4) Obtain new values of 1
1

, 1
1

, and K
l

• using P
l 

and the value of TlI 
obtained from solving Eq. (55), 

(5) Solve Eq. (57) for Ml and Eq. (55) for Tl • Repeat this iteration 
process until successive approximations produce the same 
values of Ml and Tl to the accuracy desired. 

CALCULATED VALUES FOR AIR 

Eqs. Ph psia T OR 
tl Pl psi a Tl OR Ml 

PQ 142 8.52 
2200 2200 0.150 

BB 155 8.46 

PG 130 8.93 
2000 2200 0.100 

BB 141 8.86 

PO 158 6.53 
2000 1500 0.750 

BB 162 6.56 

PO 128 5.84 
2000 1000 1. 50 

BB 127 5.89 

PG 239 3.99 
1500 1000 10.0 

BB 238 4.02 
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NORMAL SHOCK WAVES 

With T ti' Ptl and Pta Known 

When a total head tube is placed in a supersonic stream it is generally 
assumed that the pressure measuring instrument involved reads the total 
pressure, Pta' behind a normal shock wave. The stagnation conditions Ptl 
and Ttl ahead of the shock are generally known. It is often desirable to calcu­
late the free-stream Mach number Ml when these three quantities are known. 
The following procedure will yield Ml as well as PI, T

l
, P2I T2I Tta • and 

Pl/Pa: 

(1) Assuming Tt2 = Ttl and using the values of Ph' and PtH determine 
Itl and I t2 • 

(2) Solve Eq. (68) for Tt2 0 

(3) Determine It2 for Pt2 and the value of Tt2 obtained from Eq. (68). 

(4) Solve Eq. (68) again for Tt2 • Repeat this iteration process until 
successive approximations of Tt2 produce the same value to the 
accuracy desired. 

(5) Calculate the perfect gas values of oMll oTll aPI, oTu oPa and 

0(P l/p2)' 

(6) Determine III lu (p/op)1P for oTl and OP1; 12 , Ka. (P/OP)2 for 
oT2 and oPa; and Kt2 for Tt2 and Pta. 

(7) Solve the following equations in order: Eq. (58) for Xu Eq. (67) for 
Xu Eq. (60) for Til Eq. (60) for Tu Eq. (46) for P2 where Eq. (46) 
is written in the form: 

oY 

p, P~t~' (:;,r 1 

and Eq. (71) for Pl' 

(NOTE: The last value obtained for a quantity should be substituted in subse­
quent equations which require that quantity_ For example, when calculating 
PI with Eq. (71) the values of Xu Xu Tu Ta, and Pa obtained in the pre­
ceding calculations should be used in Eq. (71).) 

30 

(8) Determine 11, III KII Ll for the new values of TI and PI; and /21 
K2 , L2 for the new values of T2 and P2. 

(9) Solve for P/Pa and Mu respectively, from Eqso (66) and (57). 

(10) Repeat the above procedure for Xl. XU PI" T19 P2, and T2 • 

Determine new values of III III Kl , L1 , /u ~. and La, and solve 
again for P/P2 and MI' This iteration process should be continued 
until all calculated values repeat to the accuracy desired. 
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With T tt' P tl' and M 1 Known 

The static conditions before anq after a normal shock wave and the 
stagnation conditions after the shock can be determined when Ml , PtP 

and Ttt are known. The gas properties obtained during the calculation 
process are: PI, T1> P2' T 2 • Ph, oT

I
• and P/P2. The calculation proce­

dure is as follows: 

(1) . Calculate the perfect gas values of oPl • OTI' oP2, oT2 and oPt2 , 

(2) Determine II, III K1> for oPI and oTI; Itt' Kh for Ptl and Th • 

(3) Solve the following equations in order: Eq. (58) for XI' Eq. 
(60) for TI and Eq. (46) for PI in the form 

(Note: The last value obtained for a quantity should be substituted in 
subsequent equations which require that quantity. For example, when 
calculating Eq. (46) for PI' the value of TI obtained with Eq. (60) should 
be used in Eq. (46). 

(4) Determine 113 11> KI for these new values of PI and T1 • 

(5) Repeat the above calculation procedure for XI' T1> and Pl' This 
iteration process should be continued until all calculated values 
repeat to the desired accuracy. 

(6) Determine LI for PI and TI; 12, L2 for oP2 and oT
2

• 

(7) Solve Eq. (66) for (P/P2) ' Eq. (67) for X2 , Eq. (60) for T2> and 
Eq. (70) for P2 • 

(8) Determine 12 , L2 for these new values of P2 and T2 • 

(9) Repeat the above calculation procedure for (P/P2) ' X2 , T2I and 
P2' This iteration process should be continued until all calcu­
lated values repeat to the accuracy desired. 

(10) Assuming OTt2 = Ttl determine 0lt2 and oKt2 • 

(11) Solve Eq. (68) for Tt2 and Eq. (46) for Pt2 in the form 

oY 

~~t2)OY-l 

(12) Determine It2 and Kt2 for these new values of Pt2 and Tt2 • 

(13) Repeat the above calculation procedure for Tt2 and Pt2' This 
iteration process should be continued until all calculated values 
repeat to the accuracy desired. 
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CALCULATED VALUES 

Eq. Ph Ttl Ph Pi Ti P2 T2 Pi / P2 Th Mi 

PO* 0.519 147 35.9 1842 0.181 1900 7.71 
4000 1900 40 

BB** 0.508 154 36.2 1877 0.171 1925 7.78 

PG 0.389 147 27.0 1842 0.181 1900 7.71 
3000 1900 30 

BB 0.385 155 27.1 1871 0.172 1919 7.74 

PG 0,324 147 22.5 1842 0.181 1900 7.71 
2500 1900 25 

BB 0.323 156 22.6 1867 0.172 1915 7.72 

PO 0.259 147 18.0 1842 0.181 1900 7.71 
2000 1900 20 

BB 0.260 156 18.1 1864 0.172 1912 7.70 

PG 0.195 147 13.5 1842 0.181 1900 7.71 
1500 1900 15 

BB 0.195 156 13.6 1861 0.172 1909 7.68 

PO O. 130 147 8.98 1842 0.181 1900 7.71 
1000 1900 10 

BB 0.131 157 9.04 1858 0". 172 1906 7.66 

PG 0.0648 147 4.49 1642 0.181 1900 7.71 
500 1900 5 

BB 0.0659 157 4.52 1855 0.172 1903 7.64 

PG 0.0523 101 6.31 2134 0.175 2200 10.20 
2500 2200 7 

BB 0.0526 110 6.36 2167 0.163 2218 10.10 

PG 0.0997 108 9.91 1901 0.176 1960 9.24 
2500 1960 11 

BB 0.0994 115 9.97 1928 0.167 1976 9.23 

PG 0.171 131 13.5 1844 0.179 1900 8.22 
2000 1900 15 

BB 0.171 139 13.6 1865 0.170 1912 8.21 

PG 3.19 328 88.8 1837 0.201 1900 4.90 
1500 1900 100 

BB 3.20 348 89.4 1855 0.192 1909 4.87 

PG 1.40 259 44.5 1645 0.197 1700 5.28 
1000 1700 50 

BB 1.38 271 44.7 1657 0.189 1705 5.26 

*Perfect gas equation 
**BeaHie-Bridrreman equation 
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ILLUSTRATIONS 

Several of the thermodynamic properties and Beattie-Bridgeman 
correction factors for air have been calculated using the equations 
derived in the body of this report. These quantities are contained in 
tabular form in Ref. 8. Graphs of the tabulated values are included 
herein. Quick approximate solutions of various thermodynamic prob­
lems can be obtained using the graphs. A MoHier diagram for air is 
also included; the values of enthalpy and entropy were not included in 
the tables of Ref. 8. 
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